ALGEBRA 2 CHAPTER 6 NOTES
 SECTION 6-1 POLYNOMIALS

Objectives:
Identify, evaluate, add, and subtract polynomials. CC.9-12.F.IF.7c; CC.9-12.A.APR. 1
Classify and graph polynomials. CC.9-12.A.CED.2; CC.9-12.A.CED. 2

A \qquad is a number or a product of numbers and variables with whole number exponents. A \qquad is a monomial or a sum or difference of monomials. Each monomial in a polynomial is a term.
Polynomials have no variables in \qquad no roots or absolute values of variables, and all variables have \qquad .

Polynomials:

Not polynomials:
The \qquad is the sum of the exponents of the variables.

Identify the degree of each monomial.
A. z^{6}
B. 5.6
C. $8 x y^{3}$
D. $a^{2} b c^{3}$

An \qquad is given by the term with the greatest degree.

A is the coefficient of the first term.

A polynomial with two terms is called a \qquad , and a polynomial with three terms is called a \qquad .

A polynomial can also be classified by its \qquad .

Classifying Polynomials by Degree

Name	Degree	Example
Constant	0	-9
Linear	1	$x-4$
Quadratic	2	$x^{2}+3 x-1$
Cubic	3	$x^{3}+2 x^{2}+x+1$
Quartic	4	$2 x^{4}+x^{3}+3 x^{2}+4 x-1$
Quintic	5	$7 x^{5}+x^{4}-x^{3}+3 x^{2}+2 x-1$

Rewrite each polynomial in standard form. Then identify the leading coefficient, degree, and number of terms. Name the polynomial.
A. $3-5 x^{2}+4 x$
B. $3 x^{2}-4+8 x^{4}$

Add or subtract. Write your answer in standard form.
A. $\left(2 x^{3}+9-x\right)+\left(5 x^{2}+4+7 x+x^{3}\right)$
B. $\left(3-2 x^{2}\right)-\left(x^{2}+6-x\right)$

Graph each polynomial function on a calculator. Describe the graph and identify the number of real zeros.
A. $f(x)=2 x^{3}-3 x$
B. $f(x)=-\frac{1}{6} x^{4}+2 x^{2}-2$

ALGEBRA 2 CHAPTER 6 NOTES SECTION 6-2 MULTIPLYING POLYNOMIALS
 Objectives:
 Multiply polynomials.

Use binomial expansion to expand binomial expressions that are raised to positive integer powers. CC.9-12.A.APR.5; CC.9-12.A.APR.1; CC.9-12.A.APR. 4
Find each product.
A. $4 y^{2}\left(y^{2}+3\right)$
B. $f g\left(f^{4}+2 f^{3} g-3 f^{2} g^{2}+f g^{3}\right)$
C. $3 c d^{2}\left(4 c^{2} d-6 c d+14 c d^{2}\right)$

Find the product. Using "rainbows"
$(a-3)\left(2-5 a+a^{2}\right)$
Find the product.
$\left(y^{2}-7 y+5\right)\left(y^{2}-y-3\right)$

Find the product.
$\left(x^{2}-4 x+1\right)\left(x^{2}+5 x-2\right)$

Pascal's triangle.

Binomial Theorem

Expand:

$$
(k-5)^{3}
$$

ALGEBRA 2 CHAPTER 6 NOTES SECTION 6-3 DIVIDING POLYNOMIALS

Objectives:

Use long division and synthetic division to divide polynomials. CC.9-12.A.APR.2; CC.912.A.APR. 6

Divide using long division.
$\left(2 y^{2}+2 y^{3}+25\right) \div(y-3)$
$y - 3 \longdiv { 2 y ^ { 3 } - y ^ { 2 } + 0 y + 2 5 }$
$\left(15 x^{2}+8 x-12\right) \div(3 x+1)$ $3 x + 1 \longdiv { 1 5 x ^ { 2 } + 8 x - 1 2 }$ is a shorthand method of dividing a polynomial by a linear binomial by using only the coefficients.
$\left(3 x^{4}-x^{3}+5 x-1\right) \div(x+2)$

You can use synthetic division to evaluate polynomials. This process is called .
$P(x)=2 x^{3}+5 x^{2}-x+7$ for $x=2$

$$
P(x)=x^{3}+3 x^{2}+4 \text { for } x=-3
$$

ALGEBRA 2 CHAPTER 6 NOTES SECTION 6-4 FACTORING POLYNOMIALS

Objectives:
Use the Factor Theorem to determine factors of a polynomial. CC.9-12.A.APR.2; CC.9-12.A.APR.3;

Factor the sum and difference of two cubes. CC.9-12.A.APR.4; CC.9-12.A.SSE. 2

The \qquad states that if a polynomial is divided by ($x-a$), the remainder will be a \qquad .

The \qquad : if the remainder is 0 , then $(x-a)$ is a \qquad .

Determine whether the given binomial is a factor of the polynomial $P(x)$.
A. $(x+1) ;\left(x^{2}-3 x+1\right)$
B. $(x+2) ;\left(3 x^{4}+6 x^{3}-5 x-10\right)$

Factor by grouping:
$x^{3}-x^{2}-25 x+25$.
$2 x^{3}+x^{2}+8 x+4$

Factoring the Sum and the Dhference of Tro Cubes	
METHOD	ALGEBRA
Sum of two cubes	$a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)$
Difference of two cubes	$a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$

$4 x^{4}+108 x$
$125 d^{3}-8$

ALGEBRA 2 CHAPTER 6 NOTES
 SECTION 6-5 FINDING REAL ROOTS
 Objectives:
 Identify the multiplicity of roots.
 CC.9-12.A.APR. 3

Use the Rational Root Theorem and the irrational Root Theorem to solve polynomial equations. CC.9-12.A.REI.11; CC.9-12.A.CED. 1

Solve the polynomial equation by factoring.
$4 x^{5}+4 x^{4}-24 x^{3}=0$
$x^{4}+25=26 x^{2}$

Sometimes a polynomial equation has a factor that appears more than once. This creates a \qquad

The \qquad of root r is the number of times that $x-r$ is a factor of $P(x)$.

When a real root has a multiplicity of one, the graph of $y=P(x)$ will \qquad the x-axis cleanly.

When a real root has \qquad multiplicity, the graph of $y=P(x)$
the x-axis but \qquad .

When a real root has \qquad multiplicity greater than 1, the graph
\qquad or "swooshes" as it crosses the x-axis.

Looking at the multiplicities of the previous equations, sketch a rough graph:

can help you find all
possible rational roots of a polynomial equation.

Rational Root Theorem

If the polynomial $P(x)$ has integer coefficients, then every rational root of the polynomial equation $P(x)=0$ can be written in the form $\frac{p}{q}$, where p is a factor of the constant term of $P(x)$ and q is a factor of the leading coefficient of $P(x)$.

The \qquad say that irrational roots come in \qquad . For example, if you know that $1+$ is a root of $x^{3}-x^{2}-3 x-1=0$, then you know that $1-\quad$ is also a root.

Identify all the real roots of $2 x^{3}-3 x^{2}-10 x-4=0$.

$$
3 x^{4}-7 x^{2}+6 x-12=0
$$

ALGEBRA 2 CHAPTER 6 NOTES
 SECTION 6-6 FUNDAMENTAL THEOREM OF ALGEBRA

Objectives:

Use the Fundamental Theorem of Algebra and its corollary to write a polynomial equation of least degree with given roots. (CC.9-12.N.CN7,CN8,CN90 Identify all of the roots of a polynomial equation.(CC.9-12.A.APR.2) Also (CC.9-12.A.CED1, CC.9-12.A.REI.11)

3 other names for a root:

Write the simplest polynomial with roots $\mathbf{- 1 , 2 / 3}$, and 4.

Write the simplest function with zeros $2+i, \quad$ and 1.

THE FUNDAMENTAL THEOREM OF ALGEBRA

Solve $x^{4}-3 x^{3}+5 x^{2}-27 x-36=0$ by finding all roots.

Solve $x^{4}+4 x^{3}-x^{2}+16 x-20=0$ by finding all roots.

ALGEBRA 2 CHAPTER 6 NOTES SECTION 6-7 GRAPHS OF POLYNOMIALS

Objectives:

Use properties of end behavior to analyze, describe, and graph polynomial functions. CC.912.A.APR.3; CC.9-12.F.IF.7c

Identify and use maxima and minima of polynomial functions to solve problems. CC.9-12.A.CED.2; CC.9-12.A.CED. 3

Graphs of Polynomial Functions					
Linear function Degree 1	Quadratic function Degree 2	Cubic function Degree 3	Quartic function Degree 4	Quintic function Degree 5	

is a description of the values of the
function as x approaches infinity \qquad or negative infinity \qquad .

The \qquad coefficient of a polynomial function determine its end behavior.

Identify the leading coefficient, degree, and end behavior.
A. $Q(x)=-x^{4}+6 x^{3}-x+9$
B. $P(x)=2 x^{5}+6 x^{4}-x+4$

Determine a possible equation given the graph.

Graph the function. $f(x)=x^{3}+4 x^{2}+x-6$.

A is where a graph changes from

A turning point corresponds to a local

ALGEBRA 2 CHAPTER 6 NOTES SECTION 6-8 TRANSFORMING POLYNOMIALS

Objectives:

Transform polynomial functions. CC.9-12.F.IF.7c; CC.9-12.F.BF.3;
CC.9-12.A.CED. 3

Transformations of $f(x)$			
Transformation	$f(x)$ Notation	Examples	
Vertical translation	$f(x)+k$	$g(x)=x^{3}+3$ 3 units up $g(x)=x^{3}-4$ 4 units down	
Horizontal translation	$f(x-h)$	$g(x)=(x-2)^{3}$ 2 units right $g(x)=(x+1)^{3}$ 1 unit left	
Vertical stretch/ compression	$a f(x)$	$g(x)=6 x^{3}$ $g(x)=\frac{1}{2} x^{3}$	stretch by 6 compression by $\frac{1}{2}$
Horizontal stretch/ compression	$f\left(\frac{1}{b} x\right)$	$g(x)=\left(\frac{1}{5} x\right)^{3}$ stretch by 5 $g(x)=(3 x)^{3}$ compression by $\frac{1}{3}$ Reflection $-f(x)$ $f(-x)$ $g(x)=-x^{3}$ $g(x)=(-x)^{3}$across x-axis across y-axis	

For $f(x)=x^{3}-6$, write the rule for each function and sketch its graph.

Let $f(x)=x^{3}+5 x^{2}-8 x+1$. Write a function g that performs each transformation. Reflect $f(x)$ across the x-axis. Reflect $f(x)$ across the y-axis.

Let $f(x)=2 x^{4}-6 x^{2}+1$. Graph f and g on the same coordinate plane. Describe g as a transformation of f.

Let $f(x)=16 x^{4}-\mathbf{2 4} x^{2}+4$. Graph f and g on the same coordinate plane. Describe g as a transformation of f.

Write a function that transforms $f(x)=6 x^{3}-3$ in each of the following ways. Compress vertically by a factor of $1 / 3$, and shift 2 units right.

Reflect across the y-axis and shift 2 units down.
Write a function that transforms $f(x)=8 x^{3}-2$ in each of the following ways.
Compress vertically by a factor of $1 / 2$, and move the x-intercept 3 units right.

ALGEBRA 2 CHAPTER 6 NOTES SECTION 6-9 CURVE FITTING Objectives:

Use finite differences to determine the degree of a polynomial that will fit a given set of data. CC.9-12.F.IF.7c; CC.9-12.A.CED.3; CC.9-12.A.CED. 2 Use technology to find polynomial models for a given set of data.

Finite Differences of Polynomials

Function Type	Degree	Constant Finite Differences
Linear	1	First
Quadratic	2	Second
Cubic	3	Third
Quartic	4	Fourth
Quintic	5	Fifth

Use finite differences to determine the degree of the polynomial that best describes the data.

x	-6	-3	0	3	6	9
y	-9	16	26	41	78	151

x	12	15	18	21	24	27
y	3	23	29	29	31	43

The table below shows the population of a city from 1960 to 2000. Write a polynomial function for the data.

Year	1960	1970	1980	1990	2000
Population (Thousands)	4,267	5,185	6,166	7,830	10,812

The table below shows the gas consumption of a compact car driven a constant distance at various speed. Write a polynomial function for the data

Speed	25	30	35	40	45	50	55	60
Gas (gal)	23.8	25	25.2	25	25.4	27	30.6	37

Often, real-world data can be too \qquad for you to use finite differences or find a polynomial function that fits perfectly. In these situations, you can use the regression feature of your graphing calculator. Remember that the closer the \boldsymbol{R}^{2}-value is to \qquad , the \qquad .

The table below shows the opening value of a stock index on the first day of trading in various years. Use a polynomial model to estimate the value on the first day of trading in 2000

Year	1994	1995	1996	1997	1998	1999
Price (\$)	683	652	948	1306	863	901

The table below shows the opening value of a stock index on the first day of trading in various years. Use a polynomial model to estimate the value on the first day of trading in 1999.

Year	1994	1995	1996	2000	2003	2004
Price (\$)	3754	3835	5117	11,497	8342	10,454

