# ALGEBRA 2 CHAPTER 6 NOTES SECTION 6-1 POLYNOMIALS

| <b>Objectives:</b> |
|--------------------|
|--------------------|

Identify, evaluate, add, and subtract polynomials. CC.9-12.F.IF.7c; CC.9-12.A.APR.1 Classify and graph polynomials. CC.9-12.A.CED.2; CC.9-12.A.CED.2

| Α                               | is a number or a                 | a product of numb           | ers and <b>v</b> | ariables with v                       | vhole       |
|---------------------------------|----------------------------------|-----------------------------|------------------|---------------------------------------|-------------|
|                                 | xponents.                        |                             |                  |                                       |             |
| Α                               | is a monomia                     | l or a sum or differ        | ence of r        | monomials. Eac                        | h           |
| monomia                         | l in a polynomial is a term.     |                             |                  |                                       |             |
| Polynomia                       | als have no variables in         |                             |                  |                                       | no roots    |
| or absolut                      | e values of variables, and all v | ariables have               |                  |                                       | •           |
| Polynomia                       | als:                             |                             |                  |                                       |             |
| Not polyn                       | omials:                          |                             |                  |                                       |             |
| The                             |                                  | is the sum of               | the expo         | onents of the va                      | riables.    |
| Identify th                     | ne degree of each monomial.      |                             |                  |                                       |             |
| <b>A.</b> <i>z</i> <sup>6</sup> | B. 5.6                           | C. 8 <i>xy</i> <sup>3</sup> |                  | D. <i>a<sup>2</sup>bc<sup>3</sup></i> | 3           |
| An                              |                                  | is given by t               | he term          | with the greate                       | est degree. |
| Α                               |                                  | i                           | s the co         | efficient of the                      | first term. |
|                                 | Sta                              | andard Form                 |                  |                                       |             |
|                                 | Leading coefficient              | Degree of polyno            | mial             |                                       |             |
|                                 | 5x                               | $3 + 8x^{2} +$              | 3x               | - 17                                  |             |
|                                 | Degree of term: 3                | 2                           | 1                | 0                                     |             |
|                                 | nial with two terms is called a_ |                             |                  | _, and a polyno                       | omial with  |
| three tern                      | ns is called a                   | ·                           |                  |                                       |             |

A polynomial can also be classified by its\_\_\_\_\_\_.

| Classifying Polynomials by Degree |   |                                    |  |  |  |  |
|-----------------------------------|---|------------------------------------|--|--|--|--|
| Name Degree Example               |   |                                    |  |  |  |  |
| Constant                          | 0 | _9                                 |  |  |  |  |
| Linear 1                          |   | x – 4                              |  |  |  |  |
| Quadratic 2                       |   | $x^2 + 3x - 1$                     |  |  |  |  |
| Cubic 3                           |   | $x^3 + 2x^2 + x + 1$               |  |  |  |  |
| Quartic 4                         |   | $2x^4 + x^3 + 3x^2 + 4x - 1$       |  |  |  |  |
| Quintic 5                         |   | $7x^5 + x^4 - x^3 + 3x^2 + 2x - 1$ |  |  |  |  |

Rewrite each polynomial in standard form. Then identify the leading coefficient, degree, and number of terms. Name the polynomial.

A. 
$$3 - 5x^2 + 4x$$
 B.  $3x^2 - 4 + 8x^4$ 

Add or subtract. Write your answer in standard form.

A. 
$$(2x^3 + 9 - x) + (5x^2 + 4 + 7x + x^3)$$
  
B.  $(3 - 2x^2) - (x^2 + 6 - x)$ 

Graph each polynomial function on a calculator. Describe the graph and identify the number of real zeros.

A. 
$$f(x) = 2x^3 - 3x$$
  
B.  $f(x) = -\frac{1}{6}x^4 + 2x^2 - 2$ 

### **ALGEBRA 2 CHAPTER 6 NOTES SECTION 6-2 MULTIPLYING POLYNOMIALS**

**Objectives:** 

Multiply polynomials.

Use binomial expansion to expand binomial expressions that are raised to positive integer powers. CC.9-12.A.APR.5; CC.9-12.A.APR.1; CC.9-12.A.APR.4

Find each product.

A.  $4y^2(y^2+3)$ 

B.  $fg(f^4 + 2f^3g - 3f^2g^2 + fg^3)$ C.  $3cd^2(4c^2d - 6cd + 14cd^2)$ 

Find the product. Using "rainbows"

 $(a-3)(2-5a+a^2)$ 

Find the product.

 $(y^2 - 7y + 5)(y^2 - y - 3)$ 



Find the product.

 $(x^2 - 4x + 1)(x^2 + 5x - 2)$ 

Pascal's triangle.

**Binomial Theorem** 

Expand:

(k – 5)<sup>3</sup>

 $(3x + 1)^4$ 

# ALGEBRA 2 CHAPTER 6 NOTES SECTION 6-3 DIVIDING POLYNOMIALS

**Objectives:** 

Use long division and synthetic division to divide polynomials. CC.9-12.A.APR.2; CC.9-12.A.APR.6

Divide using long division.

$$(2y^2+2y^3+25) \div (y-3)$$
  $y-3) 2y^3-y^2+0y+25$ 

$$(15x^2 + 8x - 12) \div (3x + 1)$$
  $3x + 1) 15x^2 + 8x - 12$ 

is a shorthand method of dividing a polynomial by a linear binomial by using only the coefficients.

$$(3x^4 - x^3 + 5x - 1) \div (x + 2)$$

You can use synthetic division to evaluate polynomials. This process is called

 $P(x) = 2x^3 + 5x^2 - x + 7$  for x = 2 $P(x) = x^3 + 3x^2 + 4$  for x = -3

# ALGEBRA 2 CHAPTER 6 NOTES **SECTION 6-4 FACTORING POLYNOMIALS Objectives:** Use the Factor Theorem to determine factors of a polynomial. CC.9-12.A.APR.2; CC.9-12.A.APR.3; Factor the sum and difference of two cubes. CC.9-12.A.APR.4; CC.9-12.A.SSE.2 The \_\_\_\_\_\_states that if a polynomial is divided by (x - a), the remainder will be a \_\_\_\_\_\_.

The\_\_\_\_\_\_: if the remainder is 0, then (x – a) is a \_\_\_\_\_\_.

Determine whether the given binomial is a factor of the polynomial P(x).

B. (x + 2);  $(3x^4 + 6x^3 - 5x - 10)$ A. (x + 1);  $(x^2 - 3x + 1)$ 

Factor by grouping:

 $x^3 - x^2 - 25x + 25$ .

 $2x^3 + x^2 + 8x + 4$ 

| Factoring the Sum and the Difference of Two Cubes |                                               |  |  |  |  |
|---------------------------------------------------|-----------------------------------------------|--|--|--|--|
| METHOD                                            | ALGEBRA                                       |  |  |  |  |
| Sum of two cubes                                  | $a^{3} + b^{3} = (a + b)(a^{2} - ab + b^{2})$ |  |  |  |  |
| Difference of two cubes                           | $a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2})$ |  |  |  |  |

 $4x^4 + 108x$ 



| ALGEBRA 2 CHAPTER 6 NOTES<br>SECTION 6-5 FINDING REAL ROOTS<br>Objectives:<br>Identify the multiplicity of roots.<br>CC.9-12.A.APR.3<br>Use the Rational Root Theorem and the irrational Root Theorem to solve polynomial<br>equations. CC.9-12.A.REI.11; CC.9-12.A.CED.1 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Solve the polynomial equation by factoring.<br>$4x^5 + 4x^4 - 24x^3 = 0$ $x^4 + 25 = 26x^2$                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                           |
| Sometimes a polynomial equation has a factor that appears more than once. This creates a                                                                                                                                                                                  |
| The of root $r$ is the number of times that $x - r$ is a factor of $P(x)$ .                                                                                                                                                                                               |
| When a real root has a multiplicity of one, the graph of y = P(x) will                                                                                                                                                                                                    |
| When a real root hasmultiplicity, the graph of y = P(x)the x-axis but                                                                                                                                                                                                     |
| When a real root hasmultiplicity greater than 1, the graph or "swooshes" as it crosses the <i>x</i> -axis.                                                                                                                                                                |
| The root $-3$ has a multiplicity of 2.<br>The graph <i>touches</i> at (-3, 0).<br>The graph $\frac{7}{20}$ $\frac{7}{20}$ $\frac{7}{20}$ The root 0 has a multiplicity of 3.<br>The graph <i>bends</i> near (0, 0).                                                       |

Looking at the multiplicities of the previous equations, sketch a rough graph:



can help you find all

# possible rational roots of a polynomial equation.

## **Rational Root Theorem**

If the polynomial P(x) has integer coefficients, then every rational root of the polynomial equation P(x) = 0 can be written in the form  $\frac{p}{q}$ , where p is a factor of the constant term of P(x) and q is a factor of the leading coefficient of P(x).

| The      | say that irrational roots                                                                |
|----------|------------------------------------------------------------------------------------------|
| come in_ | For example, if you know                                                                 |
| that 1 + | is a root of $x^3 - x^2 - 3x - 1 = 0$ , then you know that $1 - x^2 = 1$ is also a root. |

Identify all the real roots of  $2x^3 - 3x^2 - 10x - 4 = 0$ .

 $3x^4 - 7x^2 + 6x - 12 = 0$ 

# ALGEBRA 2 CHAPTER 6 NOTES SECTION 6-6 FUNDAMENTAL THEOREM OF ALGEBRA Objectives:

Use the Fundamental Theorem of Algebra and its corollary to write a polynomial equation of least degree with given roots. (CC.9-12.N.CN7,CN8,CN90 Identify all of the roots of a polynomial equation.(CC.9-12.A.APR.2) Also (CC.9-12.A.CED1, CC.9-12.A.REI.11)

3 other names for a root:

Write the simplest polynomial with roots -1, 2/3, and 4.

Write the simplest function with zeros 2 + i, , and 1.

#### THE FUNDAMENTAL THEOREM OF ALGEBRA

Solve  $x^4 - 3x^3 + 5x^2 - 27x - 36 = 0$  by finding all roots.

Solve  $x^4 + 4x^3 - x^2 + 16x - 20 = 0$  by finding all roots.

Write the simplest function with zeros 2*i*, , and 3.

# ALGEBRA 2 CHAPTER 6 NOTES SECTION 6-7 GRAPHS OF POLYNOMIALS

**Objectives:** 

Use properties of end behavior to analyze, describe, and graph polynomial functions. CC.9-12.A.APR.3; CC.9-12.F.IF.7c

Identify and use maxima and minima of polynomial functions to solve problems. CC.9-12.A.CED.2; CC.9-12.A.CED.3



The \_\_\_\_\_\_coefficient of a polynomial function determine its end behavior.

Identify the leading coefficient, degree, and end behavior. A.  $Q(x) = -x^4 + 6x^3 - x + 9$ B.  $P(x) = 2x^5 + 6x^4 - x + 4$ 

Determine a possible equation given the graph.







| Α    | is where a graph changes |
|------|--------------------------|
| from |                          |

•

A turning point corresponds to a *local\_\_\_\_\_* 

# ALGEBRA 2 CHAPTER 6 NOTES SECTION 6-8 TRANSFORMING POLYNOMIALS

Objectives: Transform polynomial functions. CC.9-12.F.IF.7c; CC.9-12.F.BF.3;

#### CC.9-12.A.CED.3

| Transformations of <i>f</i> ( <i>x</i> ) |                              |                                      |                              |  |  |  |
|------------------------------------------|------------------------------|--------------------------------------|------------------------------|--|--|--|
| Transformation                           | f(x) Notation                | Examples                             |                              |  |  |  |
| Vertical translation                     | f(x) + k                     | $g(x) = x^3 + 3$                     | 3 units up                   |  |  |  |
|                                          | $I(x) + \mathbf{k}$          | $g(x) = x^3 - 4$                     | 4 units down                 |  |  |  |
| Horizontal translation                   | f(x - h)                     | $g(x) = (x-2)^3$                     | 2 units right                |  |  |  |
|                                          | I(x - II)                    | $g(x) = (x+1)^3$                     | 1 unit left                  |  |  |  |
| Vertical stretch/                        | af(x)                        | $g(x) = 6x^3$                        | stretch by 6                 |  |  |  |
| compression                              | ar(x)                        | $g(x) = \frac{1}{2}x^3$              | compression by $\frac{1}{2}$ |  |  |  |
| Horizontal stretch/                      | (1)                          | $g(x) = \left(\frac{1}{5}x\right)^3$ | stretch by 5                 |  |  |  |
| compression                              | $f\left(\frac{1}{b}x\right)$ | $g(x) = (3x)^3$                      | compression by $\frac{1}{3}$ |  |  |  |
| Reflection                               | -f(x)                        | $g(x) = -x^3$                        | across <i>x</i> -axis        |  |  |  |
|                                          | f(-x)                        | $g(x) = (-x)^3$                      | across <i>y</i> -axis        |  |  |  |

# For $f(x) = x^3 - 6$ , write the rule for each function and sketch its graph.



Let  $f(x) = x^3 + 5x^2 - 8x + 1$ . Write a function *g* that performs each transformation. Reflect f(x) across the *x*-axis. Reflect f(x) across the *y*-axis.

Let  $f(x) = 2x^4 - 6x^2 + 1$ . Graph f and g on the same coordinate plane. Describe g as a transformation of f.



Let  $f(x) = 16x^4 - 24x^2 + 4$ . Graph f and g on the same coordinate plane. Describe g as a transformation of f.



Write a function that transforms  $f(x) = 6x^3 - 3$  in each of the following ways. Compress vertically by a factor of 1/3, and shift 2 units right.

Reflect across the y-axis and shift 2 units down.

Write a function that transforms  $f(x) = 8x^3 - 2$  in each of the following ways. Compress vertically by a factor of 1/2, and move the *x*-intercept 3 units right.

# ALGEBRA 2 CHAPTER 6 NOTES SECTION 6-9 CURVE FITTING

**Objectives:** 

Use finite differences to determine the degree of a polynomial that will fit a given set of data. CC.9-12.F.IF.7c; CC.9-12.A.CED.3; CC.9-12.A.CED.2

Use technology to find polynomial models for a given set of data.

| Finite Differences of Polynomials                |   |        |  |  |  |  |
|--------------------------------------------------|---|--------|--|--|--|--|
| Function Type Degree Constant Finite Differences |   |        |  |  |  |  |
| Linear                                           | 1 | First  |  |  |  |  |
| Quadratic 2                                      |   | Second |  |  |  |  |
| Cubic                                            | 3 | Third  |  |  |  |  |
| Quartic 4                                        |   | Fourth |  |  |  |  |
| Quintic 5                                        |   | Fifth  |  |  |  |  |

Use finite differences to determine the degree of the polynomial that best describes the data.

| x | -6 | -3 | 0  | 3  | 6  | 9   |
|---|----|----|----|----|----|-----|
| У | -9 | 16 | 26 | 41 | 78 | 151 |

| x | 12 | 15 | 18 | 21 | 24 | 27 |
|---|----|----|----|----|----|----|
| У | 3  | 23 | 29 | 29 | 31 | 43 |

The table below shows the population of a city from 1960 to 2000. Write a polynomial function for the data.

|   | Year                      | 1960  | 1970  | 1980  | 1990  | 2000   |
|---|---------------------------|-------|-------|-------|-------|--------|
| R | Population<br>(Thousands) | 4,267 | 5,185 | 6,166 | 7,830 | 10,812 |

The table below shows the gas consumption of a compact car driven a constant distance at various speed. Write a polynomial function for the data

| Speed        | 25   | 30 | 35   | 40 | 45   | 50 | 55   | 60 |
|--------------|------|----|------|----|------|----|------|----|
| Gas<br>(gal) | 23.8 | 25 | 25.2 | 25 | 25.4 | 27 | 30.6 | 37 |

Often, real-world data can be too\_\_\_\_\_\_ for you to use finite differences or find a polynomial function that fits perfectly. In these situations, you can use the regression feature of your graphing calculator. Remember that the closer the *R*<sup>2</sup>-value is to \_\_\_\_, the\_\_\_\_\_\_

The table below shows the opening value of a stock index on the first day of trading in various years. Use a polynomial model to estimate the value on the first day of trading in 2000

| Year          | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 |
|---------------|------|------|------|------|------|------|
| Price<br>(\$) | 683  | 652  | 948  | 1306 | 863  | 901  |

The table below shows the opening value of a stock index on the first day of trading in various years. Use a polynomial model to estimate the value on the first day of trading in 1999.

| Year          | 1994 | 1995 | 1996 | 2000   | 2003 | 2004   |
|---------------|------|------|------|--------|------|--------|
| Price<br>(\$) | 3754 | 3835 | 5117 | 11,497 | 8342 | 10,454 |